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Abstract 

W e  study clustering under the data stream model 
of computation where: given a sequence of points, the 
objective is  to  maintain a consistently good clustering of 
the sequence observed so far,  using a small amount of 
memory and time. The data stream model i s  relevant 
to  new classes of applications involving massive data 
sets, such as web click stream analysis and multimedia 
data analysis. W e  give constant-factor approximation 
algorithms for  the k-Median problem in the data stream 
model of computation in a single pass. W e  also show 
negative results implying that our algorithms cannot be 
improved in a certain sense. 

1 Introduction 

A data stream is an ordered sequence of points 
that can be read only once or a small number of 
times. Formally, a data stream is a sequence of points 
XI, ..., xi ,..., x,, read in increasing order of the in- 
dices i. The performance of an algorithm that op- 
erates on data streams is measured by the number 
of passes the algorithm must make over the stream, 
when.constrained in terms of available memory, in ad- 
dition to the more conventional measures. The data 
stream model is motivated by emerging application in- 
volving massive data sets, e.g., customer click streams, 
telephone records, large sets of web pages, multime- 
dia data, and sets of retail chain transactions can be 
modeled as data streams. These data sets are far too 
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large to fit in main memory and are typically stored 
in secondary storage devices, making access, particu- 
larly random access, very expensive. Data stream al- 
gorithms access the input only via linear scans with- 
out random access and only require a few (hopefully, 
one) such scans over the data. Furthermore, since the 
amount of data far exceeds the amount of space (main 
memory) available to the algorithm, it is not possible 
for the algorithm to “remember” too much of the data 
scanned in the past. This scarcity of space necessitates 
the design of a novel kind of algorithm that stores only 
a summary of past data, leaving enough memory for 
the processing of future data. We remark that this is 
not the same as the model of online algorithms. 

Clustering has recently been widely studied across 
several disciplines, but only a few of the techniques de- 
veloped scale to support clustering of very large data 
sets. A common formulation of clustering is the k- 
Median problem: find k centers in a set of n points so 
as to minimize the sum of distances from data points 
to their closest cluster centers. Most algorithms for k- 
Median have large space requirements and involve ran- 
dom access to the input data. We give constant-factor 
approximation algorithms for the k-Median problem 
that naturally fit into this data stream setting. Our 
algorithms make a single pass over the data and use 
small space. We first give a randomized constant-factor 
approximation algorithm for k-Median, which makes 
one pass over the data using n‘ memory (for E < 1) 
and requires only d(nk) time. We also prove that 
any deterministic k-Median algorithm that achieves a 
constant-factor approximation cannot run in time less 
than !2(nk). Finally, we give a deterministic d(nk)- 
time, polylog(n)-approximation single-pass algorithm 
that uses nE space, for E < 1. 

Related Work on Data Streams One of the first 
results in data streams was the result of Munro and 
Paterson [16], where they studied the space require- 
ment of selection and sorting as a function of the num- 
ber of passes over the data. The model was formal- 
ized by Henzinger, Raghavan, and Rajagopalan [7], 
who gave several algorithms and complexity results re- 
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lated to graph-theoretic problems and their applica- 
tions. Other recent results on data streams can be 
found in [4, 13, 14, 61. 

Related Work on Clustering In this paper we 
shall consider models in which clusters have a distin- 
guished point, or “center.” In the &Median problem, 
the objective is to minimize the average distance from 
data points to their closest cluster centers. The 1- 
median problem was first posed by Weber [17]. In 
the k-Center problem, the objective is to minimize 
the maximum radius of a cluster. The above problems 
are all NP-hard, so we will be concerned with approx- 
imation algorithms. We will assume that the domain 
space of points is discrete, i.e., the cluster centers must 
be among the input points. The continuous case is 
related to the discrete problem by small factors (see 
Theorem 2.1). Throughout the paper we also assume 
that the input points are drawn from a metric space. 

In the recent past, several approximation algorithms 
have been proposed for the &Median problem [3, 10, 
21. These algorithms require O(n2)  space to  compute 
the dual variables or primal constraints. We will be 
interested in algorithms which use more than k medians 
but run in linear space [12, 2, 91. 

Charikar, Chekuri, Feder, and Motwani [l] gave a 
constant-factor algorithm for the incremental &Center 
problem, which is also a single-pass algorithm requir- 
ing O(nk log k) time and O(k)  space. There is a large 
difference, however, between the &Center and the k- 
Median problem since a set of IC + 1 suitably separate 
points provides a lower bound for the k-Center prob- 
lem. These points can be thought of as a proof of the 
goodness of the clustering. For the &Median problem, 
allowing weighted points, no such succinct proof exist 
and the optimization problem takes on a more global 
character. 

Our Results We begin by giving an algorithm that 
requires small space, and then later address the issue 
of clustering in one pass. In Section 2 we give a simple 
algorithm based on divide-and-conquer that achieves 
a constant-factor approximation in small space. Ele- 
ments of the algorithm and its analysis form the basis 
for the constant-factor algorithm given in Section 3. 
This algorithm runs in time O(nl+‘), uses O(nC)  mem- 
ory, and makes a single pass over the data. Next, in 
Section 4, using randomization, we show how to reduce 
the running time to O(nk) without requiring more than 
a single pass. In Section 5 we show it is not possible 
to obtain any bounded approximation ratio in deter- 
ministic o(nk) time; we also show how to achieve a 

poly-logn approximation ratio in a single pass in de- 
terministic O(nk)  time. 

2 Clustering in Small Space 

One of the first requisites of clustering a data stream 
is that the computation be carried out in small1 space. 
Our first goal will be to show that clustering can be 
carried out in small (ne for n data points) space, with- 
out being concerned with the number of passes. Sub- 
sequently we will see how to implement the algorithm 
in one pass. 

In order to cluster in small space, we investigate al- 
gorithms that examine the data in a piecemeal fashion. 
In particular, we study the performance of a divide- 
and-conquer algorithm, called Small-Space, that di- 
vides the data into pieces, clusters each of these pieces, 
and then again clusters the centers obtained (where 
each center is weighted by the number of points closer 
to it than to any other center). We show that this piece- 
meal approach is good, in that: if we had a constant- 
factor approximation algorithm, running it in divide- 
and-conquer fashion would still yield a (slightly worse) 
constant-factor approximation. We then propose an- 
other algorithm (Smaller-Space) that is similar to the 
piecemeal approach except that instead of recluster- 
ing only once, it repeatedly reclusters weighted cen- 
ters. For this algorithm, we prove that if we recluster 
a constant number of times, a constant-factor approxi- 
mation is still obtained, although, as expected, the con- 
stant factor worsens with each successive reclustering. 
The advantage of Small(er)-Space is that we sacrifice 
somewhat the quality of the clustering approximation 
to  obtain an algorithm uses much less memory. 

2.1 Simple Divide-and-Conquer and Separability 
Theorems 

We start with the version of the algorithm that 
reclusters only once. Elements of the algorithm and 
its analysis will be used in a black-box manner in the 
algorithms in the rest of the paper. 

Algorithm Small-Space(S) 

1. Divide S into 1 disjoint pieces X I , .  . . , x1. 
2. For each i, find O(k)  centers in xi. Assign 

each point in xi to its closest center. 
3. Let x’ be the O(1k) centers obtained in (2), 

where each center c is weighted by the num- 
ber of points assigned to it. 

4. Cluster x’ to  find k centers. 
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Since we are interested in clustering in small space, 
1 will be set so that both S and x' fit in main memory, 
if possible. If S is very large, no such 1 may exist - we 
will address this issue later. 

Before analyzing algorithm Small-Space, we de- 
scribe the relationship between the discrete and con- 
tinuous clustering problem. The following is folklore 
and is included for completeness. 

Theorem 2.1 Given an instance of the k-median 
problem with a solution of cost C ,  where the medians 
may not belong to the set of input points, there exists 
a solution of cost 2C where all the medians belong to 
the set of input points. 

Proof: Consider the solution of cost C ,  and let the 
points j , ,  . . . , j ,  be assigned to median i. Since median 
i may not be in the input, consider the point j ,  which 
is closest to i as the median (instead of i).  Thus the 
assignment distance of every point j ,  at most doubles, 
since cjrjl can be bounded by cjli + cj,i (where czy 
denotes the distance from x to y). Over all n points in 
the original set, the assignment distance can at most 

0 

The following separability theorem sets the stage for 
a divide-and-conquer algorithm. This theorem carries 
over to other clustering metrics such as the sum of 
squared distances. 

double, summing to at most 2C. 

Theorem 2.2 Consider any set of n points arbitrarily 
partitioned into disjoint sets xl,. . . , XL. The sum of 
the optimum solution values for the k-median problem 
on the L sets of points is at most twice the cost of the 
optimum k-median problem solution for all n points. 

Proof: Consider the medians used for the optimum 
k-median solution. If each partition uses these medi- 
ans, the cost of the solution will be exactly the cost 
of the optimal solution. This follows since the objec- 
tive function for k-median is the sum of distances to 
the nearest median for every point. However the set 
of medians chosen by the optimum solution need not 
be present in a partition. But in the case where the 
medians points can be arbitrary points in the space, 
the above theorem is proved. 

In case we have to choose the medians from the given 
set of points, the medians used by the optimum solu- 
tion will not be available to every partition. In this 
case use Theorem 2.1 to construct a solution which is 
at most 2 times the cost of the optimum solution. D 
~~ ~ 

'The factor 2 is avoided in the Euclidean case if we allow that 
medians can be arbitrary points in space, rather than requiring 
that they be points from the original data set. 

Next we show that the new instance, where all the 
points i that have median i' shift their weight to the 
point i' (i.e., the weighted O(1k) centers S' in Step 2 of 
Algorithm Small-Space), has a good feasible clustering 
solution. Notice that the set of points in the new in- 
stance is much smaller and may not even contain the 
medians of the optimum solution. 

Theorem 2.3 If the sum of the costs of the I optimum 
k-median solutions for X I , .  . . , X I  is C and if C* is the 
cost of the optimum k-median solution for the entire 
set S ,  then there exists a solution of cost at most 2(C+ 
C*) to the new weighted instance X I .  

Proof: As in the proof of the previous theorem, we 
will consider the k medians in the optimum continuous 
solution. 

Let the median to which i' is assigned to in the op- 
timum continuous solution for x' be ~ ( i ' ) .  Further, let 
dit be the number of points assigned to the median i'. 
The cost of x' can be expressed as xi, citr(irldjt (where 
again cZy is the distance from x to y). Each point i' 
in the new instance x' can be viewed as a collection of 
points, namely those points i assigned to the median i'. 
Thus the cost of x' can also be expressed as xi citr(it). 

Let the median to which i is assigned to in the op- 
timum continuous solution for S be u(i). The cost of 
the new instance x' is no more than xi citu(i) since T 
is optimum for x'. This sum is in turn bounded by 
xi(ci,i +ciu(i)). The first term summed over all points 
i evaluates to C and the second term evaluates to C*. 

Thus we showed an assignment to the medians of the 
optimal solution at cost C + C*. Using Theorem 2.1, 
the theorem follows. (Note that the theorem can also 
be shown to hold when the original points in S are 
weighted.) 0 

We now show that if we run a bicriteria (a,b)- 
approximation algorithm (where at most ak medians 
are output with cost at most b times the optimum k- 
Median solution) in Step 2 of Algorithm Small-Space 
and we run a c-approximation algorithm in Step 4, 
then the resulting approximation by Small-Space can 
be suitably bounded. 

Theorem 2.4 The algorithm Small-Space has an ap- 
proximation factor of 2c(l+ 2b) + 2b. 

Proof: Let the optimal k-median solution be of cost 
C*. Then the cost of the solution C at the end of the 
first stage is at most 2bC*. This is true due to Theo- 
rem 2.2, since we are adding the cost of the solutions 
to each partition, each of which is a bapproximation 

2Again, the factor 2 is avoided if we use the Euclidean distance 
and allow medians to be arbitrary points. 
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for that partition. Now by Theorem 2.3, there ex- 
ists a solution to the k-median problem on the mod- 
ified instance of cost 2(C + C*). Since we have a c- 
approximation, we have a solution of cost 2c(l+ 2b)C* 
to the modified instance. The theorem is obtained by 
summing the two costs. 0 

The black-box nature of this algorithm will allow us 
to  devise a new divide-and-conquer algorithm. 

2.2 Divide-and-Conquer Strategy 

We now generalize Small-Space so that the algo- 
rithm recursively calls itself on a successively smaller 
set of weighted centers. 

Algorithm Smaller-Space( S,i) 

1. Divide S into 1 disjoint pieces XI , .  . . , X I .  
2. For each i, find O(k)  centers in xi. Assign 

each point in xi to  its closest center. 
3. Let x’ be the O(1k) centers obtained in (2), 

where each center c is weighted by the num- 
ber of points assigned to it. 

4. Call Algorithm Smaller-Space(X’,i - 1). 

We can claim the following. 

Theorem 2.5 For constant i ,  Algorithm Smaller- 
Space(,!?, i) gives a constant-factor approximation to the 
k-Median problem. 

Proof: Assume that the approximation factor for the 
j t h  level is Aj. From Theorem 2.2 we know that the 
cost of the solution of the first level is 2b times opti- 
mal. From Theorem 2.4 we get that the approximation 
factor Aj would satisfy a simple recurrence, 

Aj = 2Aj-1(2b + 1) + 2b 

The solution of the recurrence is c . (2(2b + 1))j. This 
cl 

Since the intermediate medians in x’ must be stored 
in memory, the number of subsets 1 that we partition 
S into is limited. In particular, if the size of main 
memory is M ,  then we would need to partition S into 
l subsets so that each subset fits in main memory, i.e., 
(n/l) 5 M and so that the weighted lk centers in x’ 
also fit in main memory, i.e., lk 5 M .  Such an 1 may 
not always exist. 

In the next section we will see a way to get around 
this problem. In fact we will be able to implement the 
hierarchical scheme more cleverly and obtain a cluster- 
ing algorithm for an interesting model of computation. 

is O(1) given j is a constant. 

We have two themes to develop this idea. The first is to 
do away with the storage of the intermediate medians, 
and the second is to design a more interesting; recur- 
sive algorithm. We take up the former and re1eg;ate the 
second to a later section. 

3 The Data Stream Model 

Under the Data Stream Model, computation takes 
place within bounded space M and the data ccan only 
be accessed via linear scans (i.e., a data point can be 
seen only once in a scan, and points must be viewed in 
order). 

In this section we will modify the multi-level algo- 
rithm to operate on data streams. We will present a 
one-pass, O( 1)-approximation in this model assuming 
that the bounded memory M is not too small, more 
specifically n‘ where n denotes the size of the stream. 

This model and the line of analysis have similarities 
to incremental clustering and online models. However 
our approach will be a bit different. We will maintain 
a forest of assignments. We will complete this to k 
trees, and all the nodes in a tree will be assigned to the 
median denoted by the root of the tree. First we will 
show how to solve the problem of storing intermediate 
medians. Next we will inspect the space requirements 
and running time. 

Data Stream Algorithm To achieve this, we will 
modify our multi-level algorithm slightly. The algo- 
rithm will be the following: 

1. Input the first m points; use a bicriterion algo- 
rithm to reduce these to  O(k) (say 2k) points. 
As usual, the weight of each intermediate median 
is the number of points assigned to it in the bi- 
criterion clustering. (Assume m is a multiple of 
2k.) This requires O(f (m))  space, which for a pri- 
mal dual algorithm can be O(m2).  We will see a 
O(mk)-space algorithm later. 

2. Repeat the above till we have seen m2/(2k) of the 
original data points. At this point we have m in- 
termediate medians. 

3. Cluster these m first-level medians into 2k second- 
level medians and proceed. 

4. In general, maintain at most m level-i medians, 
and, on seeing m, generate 2k level-i + 1 medians, 
with the weight of a new median as the sum of 
the weights of the intermediate medians assigned 
to it. 

5 .  When we have seen all the original data points (or 
we want to have a clustering of the points we have 
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seen so far) we cluster all the intermediate medians 
into k final medians. 

Note that this algorithm is identical to the multi-level 
algorithm described before. 

The number of levels required by this algorithm is at 
most O(log(n/m)/log(m/k)). If we have k << m and 
m = O(ne)  for some constant E < 1 ,  we have an O(1)- 
approximation. Using linear programming or primal 
dual algorithms we will have m = where M is 
the memory size (ignoring factors due to maintaining 
intermediate medians of different levels). We argued 
that the number of levels would be a constant when 
m = n‘ and hence when M = n2€ for some e < 1 / 2 .  

Linear Space Clustering The approximation qual- 
ity which we can prove (and intuitively the actual qual- 
ity of clustering obtained on an instance) will depend 
heavily on the number of levels we have. &om this 
perspective it is profitable to use a space-efficient algo- 
rithm. 

We can use the local search algorithm in [2] to pro- 
vide a bicriterion approximation in space linear in m, 
the number of points clustered at a time. The ad- 
vantage of this algorithm is that it maintains only an 
assignment and therefore uses linear space. However 
the complication is that for this algorithm to achieve 
a bounded bicriterion approximation, we need to set a 
“cost” to each median used, so that we penalize if many 
more than k medians are used. The algorithm solves a 
facility location problem after setting the cost of each 
median to be used. However this can be done by guess- 
ing this cost in powers of ( 1  + 7) for some 0 < 7 < 1 / 6  
and choosing the best solution with at most 2k medi- 
ans. In the last step, to get k medians we use a two 
step process to reduce the number of medians to 2k 
and then use [lo, 21 to reduce to k.  This allows us to 
cluster with m = M points at a time provided k2 5 M .  

The Running Time The running time of this clus- 
tering is dominated by the contribution from the first 
level. The local search algorithm is quadratic and the 
total running time is 0(n1+€) where M = ne. We ar- 
gued before, however, that E will not be very small and 
hence the approximation quality which we can prove 
will remain small. 

We therefore claim the following theorem, 

Theorem 3.1 W e  can solve the k-Median problem on 
a data stream with time O(nl+‘)  and space @(ne) up to 
a factor 20(*). 

We have two avenues to pursue. The running time 
will be lower-bounded by the space we require, and we 

improve this bottleneck to get linear space clustering, 
but first, to achieve scalability, our goal will be to get 
clustering in time d ( n k ) .  This will mean an amortized 
update of O ( k  poZylog(n)). In the next section we will 
motivate how to achieve this, and provide evidence that 
ours is a hard bound for the running time of a clustering 
algorithm . 

The second issue is to present an algorithm with 
approximation guarantee which is polynomial in $. We 
will show how to achieve this in Section 5. 

4 Clustering Data Streams in O(nk)  
Time 

Let us recall the algorithm we have developed so far. 
We have k2 << M ,  and we are applying an alternate 
implementation of a multi-level algorithm. 

We are clustering m = O ( M )  (assuming M = O(n‘) 
for constant E > 0) points and storing 2k medians to 
“compress” the description of these data points. We 
use the local search-based algorithm in [2] .  We keep 
repeating this procedure till we see m of these descrip- 
tors or intermediate medians and compress them fur- 
ther into 2k. Finally, when we are required to output 
a clustering, we compress all the intermediate medi- 
ans (over all the levels there will be at most O ( M )  
of them) and get O(k) penultimate medians which we 
cluster into exactly k using the primal dual algorithm 
as in [lo, 21. 

4.1 Earlier Work on Clustering in d ( n k )  Time 

We will use the results in [9] on metric space algo- 
rithms that are subquadratic. The algorithm as de- 
fined will consist of two passes and will have constant 
probability of success. For high probability results, the 
algorithm will make O(1ogn) passes. As stated, the 
algorithm will only work if the original data points are 
unweighted. Consider the following algorithm: 

1. Draw a sample of size s = fl. 
2. Find k medians from these s points using the pri- 

3. Assign each of the n original points to its closest 

4. Collect the n / s  points with the largest assignment 

5 .  Find k medians from among these n / s  points. 
6 .  We have at this point 2k medians. 

mal dual algorithm in [ lo] .  

median. 

distance. 

Theorem 4.1 [9] The above algorithm gives an O(1) 
approximation with 2k medians with constant probabil- 
ity. 
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The above algorithm3 provides a constant-factor ap- 
proximation for the k-Median problem (using 2k me- 
dians) with constant probability. Repeat the above 
experiment O(1og n) times for high probability. We 
will not run this algorithm by itself, but as a substep 
in our algorithm. The algorithm requires d(nk) time 
and space. Using this algorithm with the local search 
tradeoff results in [2] reduces the space requirement to 

Alternate sampling-based results exist for the k- 
Median measure that do extend to the weighted case 
[15], however these results assume Euclidean space. 

O ( h 3 ) .  

4.2 Extension to the Weighted Case 

We need this sampling-based algorithm to work on 
weighted input. It is necessary to draw a random sam- 
ple based on the weights of the points; otherwise the 
medians with respect to the sample do not convey much 
information. The simple idea of sampling points with 
respect to their weights does not help. The philosophy 
of the above method is that a random sample will be 
reasonable for most points, that there will not be many 
outliers (at most n divided by the sample size, up to 
constants), and that in the second phase it is sufficient 
to account for these outliers. 

If the points have weights, however, in the first step 
we may only eliminate k points. Therefore sampling 
according to weights does not carry through. Contrast 
this with the algorithm in [5] where the points were in 
Euclidean space and the measure was sum of squares 
of distances. Both these facts were crucial for their 
algorithm. 

We suggest the following modification. The basic 
idea is scaling. We can round the weights to the near- 
est power of (1 + E )  for E > 0. In each group we can 
ignore the weight and lose a ( l+~)  factor. Since we have 
an O(nk) algorithm, summing over all groups, the run- 
ning time is still d(nk). The correct way to implement 
this is to compute the exponent values of the weights 
and use only those groups which exist, otherwise the 
running time will depend on the largest weight. 

4.3 The Full Algorithm 

We will use this sampling-based scheme to develop a 
one-pass and O(nk)-time algorithm that requires only 
O(n') space. 

3The algorithm presented here, without the last step, is es- 
sentially the same as in [9], however the primal dual algorithm 
which requires O(n2)  time to solve k-Median problem was not 
known when the result was published. The result proved therein 
was using O(n2k2)  local search algorithm in [12] which was a 
bicriterion approximation. 

0 Input the first O(M/k) points, and use t'he ran- 
domized algorithm above to cluster this to 2k in- 
termediate median points. 

0 Use a local search algorithm to cluster O / M )  in- 
termediate medians of level i to 2k medians of level 
i + l .  

0 Use the primal dual algorithm of Jain and Vazirani 
[lo] to cluster the final O(k) medians to k medians. 

Notice that the algorithm remains one pass, since 
the O(1og n) iterations of the randomized subalgorithm 
just add to the running time. Thus, over the first phase, 
the contribution to the running time is b(nk:). Over 
the next level, we have 9 points, and if we cluster 
O ( M )  of these at a time taking O ( M 2 )  time, the total 
time for the second phase is O(nk) again. The con- 
tribution from the rest of the levels decreases geomet- 
rically, so the running time is O(nk). As shown in 
the previous sections, the number of levels in this algo- 
rithm is O(1ogY n), and so we have a constant-factor 
approximation for k << M = @(ne) for some small E .  

Theorem 4.2 The k-Median problem has a constant- 
factor approximation algorithm running in time 
O(nklogn), in one pass over the data set, using n' 
memory, for small k. 

Thus we claim the following theorem, 

5 Lower Bounds and Deterministic Al- 
gorit hms 

In this section we explore whether our algorithms 
could be speeded up further and whether randomiza- 
tion is needed. For the former, note that we have a 
clustering algorithm that requires time d(nk:) and a 
natural question is could we have done better? We'll 
show that we couldn't have done much better since 
a deterministic lower bound for k-Median it; n(nk). 
Thus, modulo randomization, our time bounds pretty 
much match the lower bound. For the latter, we show 
one way to get rid of randomization that yields a sin- 
gle pass, small memory k-Median algorithm that is a 
poly-logn approximation. Thus we do also have a de- 
terministic algorithm, but with more loss of clustering 
quality. 

5.1 Lower Bounds 

We now show that any constant-factor determinis- 
tic approximation algorithm requires R(nk) t:ime. We 

4We could have used the sampling-based algorithm in the 
intermediate steps as well, however such a recursive, sampling- 
based algorithm will have greater errors, in theory and very likely 
in practice. 
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measure the running time by the number of times the 
algorithm queries the distance function. 

We consider a restricted family of sets of points 
where there exists a k-clustering with the property 
that the distance between any pair of points in the 
same cluster is 0 and the distance between any pair 
of points in different clusters is 1. Since the optimum 
k-clustering has value 0 (where the value is the dis- 
tance from points to  nearest centers), any algorithm 
that doesn't discover the optimum k-clustering does 
not find a constant-factor approximation. 

Note that the above problem is equivalent to the 
following Graph k-Partition Problem: Given a graph 
G which is a complete k-partite graph for some k, find 
the k-partition of the vertices of G into independent 
sets. The equivalence can be easily realized as follows: 
The set of points {SI,. . . , 5,) to be clustered naturally 
translates to the set of vertices { V I , .  . . , v,} and there is 
an edge between vi, vj iff dist(si, s j )  > 0. Observe that 
a constant-factor k-clustering can be computed with t 
queries to the distance function iff a graph k-partition 
can be computed with t queries to the adjacency matrix 
of G. 

Kavraki, Latombe, Motwani, and Raghavan [8] show 
that any deterministic algorithm that finds a Graph k- 
Partition requires R(nk) queries to the adjacency ma- 
trix of G. This result establishes a deterministic lower 
bound for &Median. 

Theorem 5.1 A deterministic k-Median algorithm 
must make R(nk) queries to the distance function to 
achieve a constant-factor approximation. 

5.2 Deterministic Algorithms Requiring d(nk) 
Time 

One natural question we can ask is what we can 
achieve without randomization. We have already seen 
how to get an O(n'+')-time clustering algorithm that 
uses n' space and gives a constant-factor approxima- 
tion. However this constant factor grows as P i ,  and if 
we were to ask for an d(nk)-time algorithm we would 
have an approximation factor polynomial in (nlk). 
Modifying our approach slightly, we can show the fol- 
lowing: 

Theorem 5.2 In  d(nk)  deterministic time, we have 
a poly-log n approximation for the k-Median problem 
in n' space and a single pass. 

Proof: First we will have to construct an algorithm 
that runs in time d(nk) .  Then we can reduce the space 
required in the same way as for the previously described 
randomized algorithm. 

Consider the primal-dual algorithm that gives a 
constant-factor (say c) approximation for the k- 
Median problem. This algorithm takes time (and 
space) an2 for some constant a. Consider the following 
algorithm, which we will call AI: partition the n origi- 
nal points into pl equal-size subsets, apply the primal- 
dual algorithm to each of these subsets, and then apply 
it to the pl  k weighted points so obtained, to get k final 
medians. If we choosepl = (n/k)%, the running time of 
Al is 2an3 kg , and the space required is 2anb kg  also. 
By Theorem 2.4 we have an approximation of 4 3  + 4c. 

Now define A2 to  split the dataset into p2 partitions 
and apply A1 on each of them and on the resulting 
intermediate medians (notice we can easily ensure an 
implementation to  get a one-pass algorithm). Solving 
to  minimize the running time will yield p2 = ( ~ / J c ) ~ / ~ .  
Therefore the running time and space required both 
become 4an 9 k 9. 

If we continue this process so that Ai calls Ai-1 

on pi partitions, we can prove without much difficulty 
that the running time and the space required by the 

algorithm will both be ~ 2 %  ('+ 2zi2' -1) k ('- 22;- '' -1  ). 
However the approximation factor ci grows as ci = 

To get the exponent of n in the running time to be 1, 
it is sufficient to have i = O(loglog1ogn). This makes 
the running time nk (hiding poly log log n factors) and 
gives approximation 0 (logp n)  since the approximation 
factor is 42i. Thus we have a poly-log n approximation 
in b(nk)  space and time. Now we can use this in our 
previous algorithm to get an O(logp n) approximation 
in n' space and O(nk) time, without using randomiza- 
tion. 0 

The above actually shows that we have an O(n'+')- 
time clustering with approximation guarantee polyno- 
mial in :. Combining this with Theorem 3.1 we get 
the following, 

Theorem 5.3 The k-Median problem can be approxi- 
mated in time O(nl+ea) and space O(ns) up to a factor 

4C:-, -k 4Ci-1. 

ofO(poZy(92~).  
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